Exercise 333

For the following problems, consider the population of Ocean City, New Jersey, which is cyclical by season.

The population can be modeled by $P(t)=82.5-67.5 \cos [(\pi / 6) t]$, where t is time in months ($t=0$ represents January 1) and P is population (in thousands). During a year, in what intervals is the population less than 20,000 ? During what intervals is the population more than 140,000 ?

Solution

Set $P(t)<20$ and solve the equation for t.

$$
\begin{gathered}
P(t)=82.5-67.5 \cos \left(\frac{\pi}{6} t\right)<20 \\
-67.5 \cos \left(\frac{\pi}{6} t\right)<-62.5 \\
\cos \left(\frac{\pi}{6} t\right)>\frac{25}{27}
\end{gathered}
$$

Recall that the cosine of an angle measures the horizontal distance to points on the unit circle.

Taking the inverse cosine of $25 / 27$ gives the counterclockwise angle from the positive x-axis. The clockwise angle is the same but negative because it's in the lower half of the unit circle.

$$
-\cos ^{-1}\left(\frac{25}{27}\right)<\frac{\pi}{6} t<\cos ^{-1}\left(\frac{25}{27}\right)
$$

Solve for t.

$$
\begin{aligned}
-\frac{6}{\pi} \cos ^{-1}\left(\frac{25}{27}\right) & <t<\frac{6}{\pi} \cos ^{-1}\left(\frac{25}{27}\right) \\
-0.740 & \lesssim t
\end{aligned}
$$

Since t is in months, multiply it by 30 to get the number of days: -22.2 days $\lesssim 30 t \lesssim 22.2$ days. This means that between December 8 and January 23 the population is under 20,000.

Now set $P(t)>140$ and solve the equation for t.

$$
\begin{gathered}
P(t)=82.5-67.5 \cos \left(\frac{\pi}{6} t\right)>140 \\
-67.5 \cos \left(\frac{\pi}{6} t\right)>57.5 \\
\cos \left(\frac{\pi}{6} t\right)<-\frac{23}{27}
\end{gathered}
$$

Recall that the cosine of an angle measures the horizontal distance to points on the unit circle.

Taking the inverse cosine of $-23 / 27$ gives the counterclockwise angle from the positive x-axis.
The clockwise angle is the same but negative because it's in the lower half of the unit circle; add 2π to it to make it positive.

$$
\cos ^{-1}\left(-\frac{23}{27}\right)<\frac{\pi}{6} t<-\cos ^{-1}\left(-\frac{23}{27}\right)+2 \pi
$$

Solve for t.

$$
\begin{aligned}
\frac{6}{\pi} \cos ^{-1}\left(-\frac{23}{27}\right)<t & <\frac{6}{\pi}\left[2 \pi-\cos ^{-1}\left(-\frac{23}{27}\right)\right] \\
4.95 & \lesssim t \lesssim 7.05
\end{aligned}
$$

Since t is in months, multiply it by 30 to get the number of days: 148.4 days $\lesssim 30 t \lesssim 211.6$ days. This means that between May 29 and August 2 the population is over 140,000 . (Note that 120 days is the start of May 1, and 210 days is the start of August 1.)

A plot of $P(t)$ versus t over the 12 months is shown here, verifying the results above.

